Nonlinearity, breaks, and long-range dependence in time-series models
Year of publication: |
January 2016
|
---|---|
Authors: | Hillebrand, Eric ; Medeiros, Marcelo C. |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Alexandria, Va. : American Statistical Association, ISSN 0735-0015, ZDB-ID 876122-X. - Vol. 34.2016, 1, p. 23-41
|
Subject: | Forecasting | Long memory | Realized variance | Smooth transitions | Zeitreihenanalyse | Time series analysis | Strukturbruch | Structural break | Volatilität | Volatility | Theorie | Theory | ARMA-Modell | ARMA model | Nichtlineare Regression | Nonlinear regression | Prognoseverfahren | Forecasting model | ARCH-Modell | ARCH model |
-
Long memory and nonlinearities in realized volatility : a Markov switching approach
Bordignon, Silvano, (2010)
-
Arouri, Mohamed, (2012)
-
Modeling and forecasting S&P 500 volatility : long memory, structural breaks and nonlinearity
Martens, Martin, (2004)
- More ...
-
Forecasting realized volatility models: the benefits of bagging and nonlinear specifications
Hillebrand, Eric, (2007)
-
Hillebrand, Eric, (2010)
-
Let´s do it again: bagging equity premium predictors
Hillebrand, Eric, (2012)
- More ...