Nonlinearity everywhere : implications for empirical finance, technical analysis and value at risk
Year of publication: |
2021
|
---|---|
Authors: | Amini, Shima ; Hudson, Robert ; Urquhart, Andrew ; Wang, Jian |
Published in: |
The European journal of finance. - London [u.a.] : Taylor & Francis Group, ISSN 1466-4364, ZDB-ID 2001610-4. - Vol. 27.2021, 13, p. 1326-1349
|
Subject: | dependence | nonlinear | predictability | Technical analysis | value-at-risk | Risikomaß | Risk measure | Prognoseverfahren | Forecasting model | Finanzanalyse | Financial analysis | Theorie | Theory | Nichtlineare Regression | Nonlinear regression | Schätzung | Estimation | Portfolio-Management | Portfolio selection | ARCH-Modell | ARCH model | Kapitaleinkommen | Capital income | Börsenkurs | Share price |
-
Improving quantile forecasts via realized double hysteretic GARCH model in stock markets
Chen, Cathy W. S., (2024)
-
Measuring asset market linkages : nonlinear dependence and tail risk
Escanciano, Juan Carlos, (2017)
-
Review on efficiency and anomalies in stock markets
Woo, Kai-yin, (2020)
- More ...
-
Stock return predictability despite low autocorrelation
Amini, Shima, (2010)
-
Amini, Shima, (2013)
-
The equity funding of smaller growing companies and regional stock exchanges
Amini, Shima, (2012)
- More ...