Normalised support: a virtual angle of measurement of 'interestingness'
Association rule mining is applied to large databases to identify product associations. In the resulting large number of rules, interestingness is difficult to determine. Researchers have defined various measures of 'interestingness' such as support, confidence, lift and gain. Support is the probability of occurrence of an item or set of items, and is the most important of these measures, since the other measures are calculated using support. This current research suggests some deficiencies in the support measure and shows it is not consistent with its definition. Because other measures are calculated using support, this may make the other measures inconsistent. The researcher in this study proposes a new measure called normalised support, which is normalisation of general support, in other context-adjusted support or penalised support. Normalised support recommendations can stabilise product sale by product cross-sell promotion. In addition, the usefulness of other measures improves automatically.
Year of publication: |
2012
|
---|---|
Authors: | Alsabhan, Waleed |
Published in: |
International Journal of Data Analysis Techniques and Strategies. - Inderscience Enterprises Ltd, ISSN 1755-8050. - Vol. 4.2012, 1, p. 101-114
|
Publisher: |
Inderscience Enterprises Ltd |
Subject: | data mining | databases | interestingness measurement | product associations | rule mining | normalised support | market basket analysis | support | confidence | lift | gain | probability | item occurrence | item sets | support measures | inconsistent measures | normalisation | context-adjusted support | penalised support | support recommendations | product sales | cross-sell promotion | grocery stores | data analysis techniques | data analysis strategies |
Saved in:
Saved in favorites
Similar items by subject
-
A comparative modelling analysis of firm performance
Owen P. Hall Jr., (2012)
-
Pabreja, Kavita, (2012)
-
The master Malmquist index measurement using DEA-based weighted average efficiency
Afsharian, Mohsen, (2012)
- More ...