Note on coloring of double disk graphs
The coloring of disk graphs is motivated by the frequency assignment problem. In 1998, Malesińska et al. introduced double disk graphs as their generalization. They showed that the chromatic number of a double disk graph <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$G$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>G</mi> </math> </EquationSource> </InlineEquation> is at most <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$33\,\omega (G) - 35$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mn>33</mn> <mspace width="0.166667em"/> <mi mathvariant="italic">ω</mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>-</mo> <mn>35</mn> </mrow> </math> </EquationSource> </InlineEquation>, where <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$\omega (G)$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="italic">ω</mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation> denotes the size of a maximum clique in <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$G$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>G</mi> </math> </EquationSource> </InlineEquation>. Du et al. improved the upper bound to <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$31\,\omega (G) - 1$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mn>31</mn> <mspace width="0.166667em"/> <mi mathvariant="italic">ω</mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>-</mo> <mn>1</mn> </mrow> </math> </EquationSource> </InlineEquation>. In this paper we decrease the bound substantially; namely we show that the chromatic number of <InlineEquation ID="IEq6"> <EquationSource Format="TEX">$$G$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>G</mi> </math> </EquationSource> </InlineEquation> is at most <InlineEquation ID="IEq7"> <EquationSource Format="TEX">$$15\,\omega (G) - 14$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mn>15</mn> <mspace width="0.166667em"/> <mi mathvariant="italic">ω</mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>-</mo> <mn>14</mn> </mrow> </math> </EquationSource> </InlineEquation>. Copyright Springer Science+Business Media New York 2014
Year of publication: |
2014
|
---|---|
Authors: | Kranjc, Jaka ; Lužar, Borut ; Mockovčiaková, Martina ; Soták, Roman |
Published in: |
Journal of Global Optimization. - Springer. - Vol. 60.2014, 4, p. 793-799
|
Publisher: |
Springer |
Subject: | Disk graph | Double disk graph | Frequency assignment problem | Chromatic number |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Frequency assignment in a SDMA satellite communication system with beam decentring feature
Kiatmanaroj, Kata, (2013)
-
On 3-Chromatic Distance-Regular Graphs
Blokhuis, A., (2006)
-
The maximum dispersion problem
Fernández, Elena, (2013)
- More ...