Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
Year of publication: |
2011
|
---|---|
Authors: | Koopman, Siem Jan ; Lucas, Andre ; Scharth, Marcel |
Publisher: |
Amsterdam and Rotterdam : Tinbergen Institute |
Subject: | Zustandsraummodell | Maximum-Likelihood-Methode | Stochastischer Prozess | Volatilität | Kopula (Mathematik) | Monte-Carlo-Methode | Theorie | State space models | importance sampling | simulated maximum likelihood | stochastic volatility | stochastic copula | stochastic conditional duration |
Series: | Tinbergen Institute Discussion Paper ; 11-057/4 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 840683987 [GVK] hdl:10419/86828 [Handle] RePEc:dgr:uvatin:20110057 [RePEc] |
Classification: | C15 - Statistical Simulation Methods; Monte Carlo Methods ; C22 - Time-Series Models |
Source: |
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state space models
Koopman, Siem Jan, (2012)
-
Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
Koopman, Siem Jan, (2011)
-
Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
Koopman, Siem Jan, (2011)
- More ...
-
Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models
Koopman, Siem Jan, (2012)
-
Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models
Koopman, Siem Jan, (2012)
-
Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models
Koopman, Siem Jan, (2012)
- More ...