Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
Year of publication: |
2012
|
---|---|
Authors: | Koopman, Siem Jan |
Other Persons: | Lucas, André (contributor) ; Scharth, Marcel (contributor) |
Publisher: |
[2012]: [S.l.] : SSRN |
Subject: | Zustandsraummodell | State space model | Theorie | Theory | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Volatilität | Volatility | Multivariate Verteilung | Multivariate distribution |
Extent: | 1 Online-Ressource (39 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 27, 2012 erstellt |
Other identifiers: | 10.2139/ssrn.1790472 [DOI] |
Classification: | C15 - Statistical Simulation Methods; Monte Carlo Methods ; C22 - Time-Series Models |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state space models
Koopman, Siem Jan, (2012)
-
Malik, Sheheryar, (2011)
-
Joint Bayesian analysis of parameters and states in nonlinear, non-Gaussian state space models
Barra, István, (2014)
- More ...
-
Predicting time-varying parameters with parameter-driven and observation-driven models
Koopman, Siem Jan, (2012)
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state space models
Koopman, Siem Jan, (2011)
-
Predicting time-varying parameters with parameter-driven and observation-driven models
Koopman, Siem Jan, (2016)
- More ...