Observation-driven hierarchical density models for missing data imputation
Year of publication: |
[2025]
|
---|---|
Authors: | Khanna, Yonas ; Lucas, André |
Publisher: |
Amsterdam, The Netherlands : Tinbergen Institute |
Subject: | missing value imputation | dynamic hierarchical factor models | forecasting | imputation uncertainty | high-dimensional panel data | Panel | Panel study | Theorie | Theory | Faktorenanalyse | Factor analysis | Fehlende Daten | Missing data | Schätzung | Estimation | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Datenqualität | Data quality | Statistische Methode | Statistical method | Stichprobenerhebung | Sampling |
-
Weigand, Roland, (2015)
-
Estimating the volatility of asset pricing factors
Becker, Janis, (2018)
-
Predicting Tail Risks by a Markov Switching MGARCH Model with Varying Copula Regimes
Fülle, Markus J., (2022)
- More ...
-
Schätzung und Spezifikation ökonometrischer neuronaler Netze
Lucas, André, (2003)
-
Copula tensor count autoregressions for modeling multidimensional integer-valued time series
Armillotta, Mirko, (2025)
-
Dynamic Partial Correlation Models
D'Innocenzo, Enzo, (2022)
- More ...