Observation-driven hierarchical density models for missing data imputation
Year of publication: |
2025
|
---|---|
Authors: | Khanna, Yonas ; Lucas, André |
Publisher: |
Amsterdam and Rotterdam : Tinbergen Institute |
Subject: | missing value imputation | dynamic hierarchical factor models | forecasting | imputation uncertainty | high-dimensional panel data |
Series: | Tinbergen Institute Discussion Paper ; TI 2025-026/III |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 1923376667 [GVK] |
Classification: | C32 - Time-Series Models ; C33 - Models with Panel Data ; c58 ; G32 - Financing Policy; Capital and Ownership Structure ; G17 - Financial Forecasting |
Source: |
-
Observation-driven hierarchical density models for missing data imputation
Khanna, Yonas, (2025)
-
Fantazzini, Dean, (2008)
-
Управление Кредитным Риском (Credit Risk Management)
Fantazzini, Dean, (2011)
- More ...
-
Observation-driven hierarchical density models for missing data imputation
Khanna, Yonas, (2025)
-
Schätzung und Spezifikation ökonometrischer neuronaler Netze
Lucas, André, (2003)
-
Copula tensor count autoregressions for modeling multidimensional integer-valued time series
Armillotta, Mirko, (2025)
- More ...