On sparse ensemble methods : an application to short-term predictions of the evolution of COVID-19
Year of publication: |
2021
|
---|---|
Authors: | Benítez-Peña, Sandra ; Carrizosa, Emilio ; Guerrero, Vanesa ; Jiménez-Gamero, M. Dolores ; Martín-Barragán, Belén ; Molero-Río, Cristina ; Ramírez-Cobo, Pepa ; Romero Morales, María Dolores ; Sillero-Denamiel, M. Remedios |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 295.2021, 2 (1.12.), p. 648-663
|
Subject: | Machine Learning | Ensemble Method | Mathematical Optimization | Selective Sparsity | COVID-19 | Coronavirus | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Mathematische Optimierung | Mathematical programming | Theorie | Theory |
-
Predicting foreign exchange rate movements : an application of the ensemble method
Djemo, Charles Raoul Tchuinkam, (2021)
-
Learning-assisted optimization for transmission switching
Pineda, Salvador, (2024)
-
Mathematical optimization modelling for group counterfactual explanations
Carrizosa, Emilio, (2024)
- More ...
-
Sparsity in optimal randomized classification trees
Blanquero, Rafael, (2020)
-
Optimal randomized classification trees
Blanquero, Rafael, (2021)
-
Mathematical optimization in classification and regression trees
Carrizosa, Emilio, (2021)
- More ...