On the complexity of robust PCA and ℓ1-norm low-rank matrix approximation
Year of publication: |
November 2018
|
---|---|
Authors: | Gillis, Nicolas ; Vavasis, Stephen A. |
Published in: |
Mathematics of operations research. - Catonsville, MD : INFORMS, ISSN 0364-765X, ZDB-ID 195683-8. - Vol. 43.2018, 4, p. 1072-1084
|
Subject: | robust PCA | low-rank matrix approximations | binary matrix factorization | cut norm | computational complexity | Theorie | Theory | Lineare Algebra | Linear algebra | Robustes Verfahren | Robust statistics | Mathematische Optimierung | Mathematical programming |
-
Binary matrix factorization and completion via integer programming
Günlük, Oktay, (2024)
-
Robust solutions for systems of uncertain linear equations
Zhen, Jianzhe, (2015)
-
Centered solutions for uncertain linear equations
Zhen, Jianzhe, (2017)
- More ...
-
Quadratic programming with one negative eigenvalue is NP-hard
Pardalos, Panos M., (1991)
-
Advances in Optimization and Approximation
Du, D.-Z., (1995)
-
On the geometric interpretation of the nonnegative rank
GILLIS, Nicolas,
- More ...