On the Log Periodogram Regression Estimator of the Memory Parameter in Long Memory Stochastic Volatility Models
We consider semiparametric estimation of the memory parameter in a long memorystochastic volatility model. We study the estimator based on a log periodogramregression as originally proposed by Geweke and Porter-Hudak (1983,Journal of Time Series Analysis 4, 221Atilde; Acirc;cent;Atilde; Acirc; Atilde; Acirc;quot;238). Expressions for the asymptotic biasand variance of the estimator are obtained, and the asymptotic distribution is shownto be the same as that obtained in recent literature for a Gaussian long memoryseries. The theoretical result does not require omission of a block of frequenciesnear the origin. We show that this ability to use the lowest frequencies is particularlydesirable in the context of the long memory stochastic volatility model