On the nonergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming
Year of publication: |
2019
|
---|---|
Authors: | Liu, Ya-Feng ; Liu, Xin ; Ma, Shiqian |
Published in: |
Mathematics of operations research. - Catonsville, MD : INFORMS, ISSN 0364-765X, ZDB-ID 195683-8. - Vol. 44.2019, 2, p. 632-650
|
Subject: | inexact augmented Lagrangian framework | nonergodic convergence rate | composite convex programming | Mathematische Optimierung | Mathematical programming | Theorie | Theory |
-
Optimal proactive monitor placement & scheduling for IoT networks
Mostafa, Basma, (2022)
-
Eirinakis, Pavlos, (2024)
-
A hybrid ANN-MILP model for agile recovery production planning for PPE products under sharp demands
Babazadeh, Reza, (2025)
- More ...
-
Efficient algorithms for robust and stable principal component pursuit problems
Aybat, Necdet, (2014)
-
Positive-Definite ℓ<sub>1</sub>-Penalized Estimation of Large Covariance Matrices
Xue, Lingzhou, (2012)
-
Positive-Definite 1-Penalized Estimation of Large Covariance Matrices
Xue, Lingzhou, (2012)
- More ...