On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs
The paper studies the rate of convergence of a weak Euler approximation for solutions to possibly completely degenerate SDEs driven by Lévy processes, with Hölder-continuous coefficients. It investigates the dependence of the rate on the regularity of coefficients and driving processes and its robustness to the approximation of the increments of the driving process. A convergence rate is derived for some approximate jump-adapted Euler scheme as well.