On the unconditional strong law of large numbers for the bootstrap mean
We first analyze some results by Athreya (1983) and Csörgo (1992). Then, by taking into account the different rates of convergence of the resampling size, we give new, simple proofs of those results. We provide examples that show that the sizes of resampling required by our results to ensure a.s. convergence are not far from being optimal.
Year of publication: |
1996
|
---|---|
Authors: | Arenal-Gutiérrez, Eusebio ; Matrán, Carlos ; Cuesta-Albertos, Juan A. |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 27.1996, 1, p. 49-60
|
Publisher: |
Elsevier |
Keywords: | Bootstrap Sample mean Strong law Ergodic theorem Non-i.d. random variables |
Saved in:
Saved in favorites
Similar items by person
-
Unconditional Glivenko-Cantelli-type theorems and weak laws of large numbers for bootstrap
Arenal-Gutiérrez, Eusebio, (1996)
-
Assessing when a sample is mostly normal
Alvarez-Esteban, Pedro C., (2010)
-
Asymptotic stability of the bootstrap sample mean
del Barrio, Eustasio, (2002)
- More ...