On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions
Year of publication: |
[2016]
|
---|---|
Authors: | Klerk, Etienne de ; Glineur, François ; Taylor, Adrien B. |
Publisher: |
[Louvain-la-Neuve] : CORE |
Subject: | gradient method | steepest descent | semidefinite programming | performance estimation problem | Mathematische Optimierung | Mathematical programming | Schätztheorie | Estimation theory |
-
Exact gradient methods with memory
Florea, Mihai I., (2019)
-
Semidefinite approximations for bicliques and bi-independent pairs
Laurent, Monique, (2025)
-
Approximating Pareto curves using semidefinite relaxations
Magron, Victor, (2014)
- More ...
-
Exact worst-case performance of first-order methods for composite convex optimization
Taylor, Adrien B., (2016)
-
Exploiting special structure in semidefinite programming: A survey of theory and applications
Klerk, Etienne de, (2010)
-
On convex quadratic approximation
Hertog, Dirk den, (2000)
- More ...