Optimal and robust combination of forecasts via constrained optimization and shrinkage
Year of publication: |
2022
|
---|---|
Authors: | Roccazzella, Francesco ; Gambetti, Paolo ; Vrins, Frédéric |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 38.2022, 1, p. 97-116
|
Subject: | Forecast combination | Machine learning | Model selection | Robust methods | Shrinkage | Prognoseverfahren | Forecasting model | Theorie | Theory | Robustes Verfahren | Robust statistics | Künstliche Intelligenz | Artificial intelligence | Modellierung | Scientific modelling | Mathematische Optimierung | Mathematical programming |
Description of contents: | Description [sciencedirect.com] |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Correction enthalten in: Volume 38, number 3, Juli-September 2022, Seite 1050 |
Other identifiers: | 10.1016/j.ijforecast.2021.04.002 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Real-time inflation forecasting with high-dimensional models : the case of Brazil
Garcia, Márcio Gomes Pinto, (2017)
-
Yuan, Jiaxin, (2025)
-
Beating the simple average : egalitarian LASSO for combining economic forecasts
Diebold, Francis X., (2017)
- More ...
-
Meta-learning approaches for recovery rate prediction
Gambetti, Paolo, (2022)
-
Forecasting recovery rates on non-performing loans with machine learning
Bellotti, Anthony, (2021)
-
Gambetti, Paolo, (2018)
- More ...