Optimal design for additive partially nonlinear models
We develop optimal design theory for additive partially nonlinear regression models, showing that Bayesian and standardized maximin D-optimal designs can be found as the products of the corresponding optimal designs in one dimension. A sufficient condition under which analogous results hold for D<sub>s</sub>-optimality is derived to accommodate situations in which only a subset of the model parameters is of interest. To facilitate prediction of the response at unobserved locations, we prove similar results for Q-optimality in the class of all product designs. The usefulness of this approach is demonstrated through an application from the automotive industry, where optimal designs for least squares regression splines are determined and compared with designs commonly used in practice. Copyright 2011, Oxford University Press.
Year of publication: |
2011
|
---|---|
Authors: | Biedermann, S. ; Dette, H. ; Woods, D. C. |
Published in: |
Biometrika. - Biometrika Trust, ISSN 0006-3444. - Vol. 98.2011, 2, p. 449-458
|
Publisher: |
Biometrika Trust |
Saved in:
Saved in favorites
Similar items by person
-
Design selection criteria for discrimination between nested models for binomial data
Waterhouse, T. H., (2006)
-
Hazod, W., (1995)
-
Some peculiar boundary phenomena for extremes of rth nearest neighbor links
Dette, H., (1990)
- More ...