Optimal investment with intermediate consumption and random endowment
We consider a problem of optimal investment with intermediate consumption and random endowment in an incomplete semimartingale model of a financial market. We establish the key assertions of the utility maximization theory assuming that both primal and dual value functions are finite in the interiors of their domains as well as that random endowment at maturity can be dominated by the terminal value of a self-financing wealth process. In order to facilitate verification of these conditions, we present alternative, but equivalent conditions, under which the conclusions of the theory hold.