Optimal probabilistic forecasts : when do they work?
Year of publication: |
2022
|
---|---|
Authors: | Martin, Gael M. ; Loiza-Maya, Ruben ; Maneesoonthorn, Worapree ; Frazier, David T. ; Ramírez Hassan, Andrés |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 38.2022, 1, p. 384-406
|
Subject: | Linear predictive pools | Optimal predictions | Predictive distributions | Proper scoring rules | Stochastic volatility with jumps | Testing equal predictive ability | Prognoseverfahren | Forecasting model | Theorie | Theory | Wahrscheinlichkeitsrechnung | Probability theory | Stochastischer Prozess | Stochastic process | Volatilität | Volatility | Prognose | Forecast | Kapitaleinkommen | Capital income |
-
Optimal probabilistic forecasts : when do they work?
Martin, Gael M., (2020)
-
Loiza-Maya, Ruben, (2020)
-
Testing and forecasting price jumps with return moments
Zhen, Fang, (2025)
- More ...
-
Optimal probabilistic forecasts : when do they work?
Martin, Gael M., (2020)
-
Bayesian forecasting in economics and finance : a modern review
Martin, Gael M., (2024)
-
Bayesian forecasting in the 21st century : a modern review
Martin, Gael M., (2023)
- More ...