Optimality of the Holm procedure among general step-down multiple testing procedures
We study the class of general step-down multiple testing procedures, which contains the usually considered procedures determined by a nondecreasing sequence of thresholds (we call them threshold step-down, or TSD, procedures) as a parametric subclass. We show that all procedures in this class satisfying the natural condition of monotonicity and controlling the family-wise error rate (FWER) at a prescribed level are dominated by one of them -- the classical Holm procedure. This generalizes an earlier result pertaining to the subclass of TSD procedures [Lehmann, E.L., Romano, J.P., 2005. Testing Statistical Hypotheses, 3rd ed. Springer, New York]. We also derive a relation between the levels at which a monotone step-down procedure controls the FWER and the generalized FWER (the probability of k or more false rejections).
Year of publication: |
2008
|
---|---|
Authors: | Gordon, Alexander Y. ; Salzman, Peter |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 78.2008, 13, p. 1878-1884
|
Publisher: |
Elsevier |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Using Complexity for the Estimation of Bayesian Networks
Salzman, Peter, (2007)
-
Smoothing of stepwise multiple testing procedures
Gordon, Alexander Y., (2014)
-
A sharp upper bound for the expected number of false rejections
Gordon, Alexander Y., (2012)
- More ...