Optimised hybrid CNN-LSTM model for stock price prediction
Year of publication: |
2024
|
---|---|
Authors: | Patnaik, Deepti ; Rao, N. V. Jagannadha ; Padhiari, Brajabandhu ; Patnaik, Srikanta |
Published in: |
International journal of management and decision making : IJMDM. - Geneva : Inderscience Enterprises Ltd., ISSN 1462-4621, ZDB-ID 2048013-1. - Vol. 23.2024, 4, p. 438-460
|
Subject: | CNN | convolutional neural network | enhanced grey wolf optimisation | evolutionary computation | forecasting | GWO | hybrid model | long short-term memory | LSTM | MAE | MAPE | mean absolute error | mean absolute percentage error | RMSE | root mean square error | Prognoseverfahren | Forecasting model | Theorie | Theory | Neuronale Netze | Neural networks | Börsenkurs | Share price | Statistischer Fehler | Statistical error |
-
Optimised hybrid CNN bi-LSTM model for stock price forecasting
Patnaik, Deepti, (2024)
-
Stock price prediction using RNN architecture : LSTM and GRU Model of Neural Network
Verma, Kajol, (2024)
-
Deep learning-based distributed denial-of-service detection
Mennour, Hanene, (2022)
- More ...
-
Optimised hybrid CNN bi-LSTM model for stock price forecasting
Patnaik, Deepti, (2024)
-
Yang, Wenli, (2018)
-
Design and Implementation of Multi-Agent Online Auction Systems in Cloud Computing
Yu, Hongyan, (2017)
- More ...