Original Data Vs High Performance Augmented Data for ANN Prediction of Glycemic Status in Diabetes Patients
Year of publication: |
[2022]
|
---|---|
Authors: | Massaro, Alessandro ; Magaletti, Nicola ; Giardinelli, Vito ; Cosoli, Gabriele ; Leogrande, Angelo ; Cannone, Francesco |
Publisher: |
[S.l.] : SSRN |
Subject: | Diabetes | Patienten | Patients | Prognoseverfahren | Forecasting model | Schätzung | Estimation | Sozialer Status | Social status |
Extent: | 1 Online-Ressource (21 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 13, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4082839 [DOI] |
Classification: | O30 - Technological Change; Research and Development. General ; O31 - Innovation and Invention: Processes and Incentives ; O32 - Management of Technological Innovation and R&D ; O33 - Technological Change: Choices and Consequences; Diffusion Processes ; o36 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Leogrande, Angelo, (2022)
-
Technological Interdependencies Predict Innovation Dynamics
Pichler, Anton, (2020)
-
Predicting the Leadership Mindset of Wildland Firefighters
Gapud, Stephanie, (2021)
- More ...
-
Massaro, Alessandro, (2022)
-
Leogrande, Angelo, (2022)
-
Text Mining Approaches Oriented on Customer Care Efficiency
Massaro, Alessandro, (2022)
- More ...