Outlier detection in auditing : integrating unsupervised learning within a multilevel framework for general ledger analysis
Year of publication: |
2024
|
---|---|
Authors: | Wei, Danyang ; Cho, Soohyun ; Vasarhelyi, Miklos A. ; Te-Wierik, Liam |
Published in: |
Journal of information systems : a publication of the Accounting Information Systems Section of the American Accounting Associaton. - Sarasota, Fla. : [Verlag nicht ermittelbar], ISSN 0888-7985, ZDB-ID 1176427-2. - Vol. 38.2024, 2, p. 123-142
|
Subject: | outlier detection | auditing | data analytics | machine learning | unsupervised learning | general ledgers | Künstliche Intelligenz | Artificial intelligence | Wirtschaftsprüfung | Financial audit | Theorie | Theory | Lernprozess | Learning process | Lernen | Learning |
-
Introducing machine learning in auditing courses
Huang, Feiqi, (2023)
-
Applying deep learning to audit procedures : an illustrative framework
Sun, Ting, (2019)
-
When the U.S. catches a cold, Canada sneezes : a lower-bound tale told by deep learning
Lepetyuk, Vadym, (2019)
- More ...
-
Explainable Artificial Intelligence (XAI) in auditing
Zhang, Chanyuan, (2022)
-
Learning from machine learning in accounting and assurance
Cho, Soohyun, (2020)
-
Cheong, Arion, (2020)
- More ...