Parametric versus semi-parametric models for the analysis of correlated survival data: A case study in veterinary epidemiology
Correlated survival data arise frequently in biomedical and epidemiologic research, because each patient may experience multiple events or because there exists clustering of patients or subjects, such that failure times within the cluster are correlated. In this paper, we investigate the appropriateness of the semi-parametric Cox regression and of the generalized estimating equations as models for clustered failure time data that arise from an epidemiologic study in veterinary medicine. The semi-parametric approach is compared with a proposed fully parametric frailty model. The frailty component is assumed to follow a gamma distribution. Estimates of the fixed covariates effects were obtained by maximizing the likelihood function, while an estimate of the variance component ( frailty parameter) was obtained from a profile likelihood construction.
Year of publication: |
1998
|
---|---|
Authors: | Shoukri, M. M. ; Attanasio, M. ; Sargeant, J. M. |
Published in: |
Journal of Applied Statistics. - Taylor & Francis Journals, ISSN 0266-4763. - Vol. 25.1998, 3, p. 357-374
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Saved in favorites
Similar items by person
-
Does taking additional Maths classes in high school affect academic outcomes?
Priulla, Andrea, (2023)
-
Sample size requirements to test the equality of raters' precision
Shoukri, M. M., (2000)
-
Issues of Cost and Efficiency in the Design of Reliability Studies
Shoukri, M. M., (2003)
- More ...