People Reject Algorithms in Uncertain Decision Domains Because They Have Diminishing Sensitivity to Forecasting Error
| Year of publication: |
2020
|
|---|---|
| Authors: | Dietvorst, Berkeley J. ; Bharti, Soaham |
| Publisher: |
[S.l.] : SSRN |
| Subject: | Theorie | Theory | Prognoseverfahren | Forecasting model | Entscheidung | Decision | Algorithmus | Algorithm | Statistischer Fehler | Statistical error |
| Extent: | 1 Online-Ressource (33 p) |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 22, 2019 erstellt |
| Other identifiers: | 10.2139/ssrn.3424158 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Eliciting human judgment for prediction algorithms
Ibrahim, Rouba, (2021)
-
An optimal imputation algorithm for reducing bias and errors in missing data handling for AI models
Sebastian, Anu Maria, (2025)
-
An overview of the effects of algorithm use on judgmental biases affecting forecasting
Chacón, Álvaro, (2025)
- More ...
-
Consumers prefer products that work using directionally consistent causal chains
Bharti, Soaham, (2025)
-
Dietvorst, Berkeley J., (2021)
-
When people don't trust algorithms
Dietvorst, Berkeley J., (2017)
- More ...