Performance attribution of machine learning methods for stock returns prediction
Year of publication: |
2022
|
---|---|
Authors: | Daul, Stéphane ; Jaisson, Thibault ; Nagy, Alexandra |
Published in: |
The Journal of finance and data science : JFDS. - Amsterdam [u.a.] : Elsevier, ISSN 2405-9188, ZDB-ID 2837532-4. - Vol. 8.2022, p. 86-104
|
Subject: | Boosted trees | Cross sectional returns | Lasso | Machine learning | Neural networks | Performance attribution | Return prediction | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Portfolio-Management | Portfolio selection | Kapitalmarktrendite | Capital market returns | Performance-Messung | Performance measurement | Theorie | Theory |
-
A cross-sectional machine learning approach for hedge fund return prediction and selection
Wu, Wenbo, (2021)
-
Deep learning, predictability, and optimal portfolio returns
Babiak, Mykola, (2020)
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
- More ...
-
Performance Attribution of Machine Learning Methods for Stock Returns Prediction
Daul, Stéphane, (2022)
-
Liquidity and impact in fair markets
Jaisson, Thibault, (2015)
-
Deep differentiable reinforcement learning and optimal trading
Jaisson, Thibault, (2022)
- More ...