Point Estimation and Confidence Set in a Parallelism Model: an Empirical Bayes Approach
When several simple regression models are assumed to have similar slopes, empirical Bayes methods can efficiently process tis vague information by estimating the hyperparameters of a conjugate prior. The shrinkage estimators we obtain are shown to be minimax and, furthermore, dominate usual confidence regions in terms of coverage probability.
Year of publication: |
1991
|
---|---|
Authors: | ROBERT, Christian ; SALEH, A. K. Md. Ehsanes |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 1991, 23, p. 65-89
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Saved in favorites
Similar items by person
-
Point estimation and confidence set estimation in a parallelism model : an empirical bayes approach
Robert, Christian P., (1991)
-
On some L-estimation in linear regression models
Alimoradi, Soroush, (1998)
-
Nonparametric shrinkage estimators of location in a multivariate simple regression model
Sen, Pranab Kumar, (1985)
- More ...