Portfolio return distributions: Sample statistics with non-stationary correlations
We consider random vectors drawn from a multivariate normal distribution and compute the sample statistics in the presence of non-stationary correlations. For this purpose, we construct an ensemble of random correlation matrices and average the normal distribution over this ensemble. The resulting distribution contains a modified Bessel function of the second kind whose behavior differs significantly from the multivariate normal distribution, in the central part as well as in the tails. This result is then applied to asset returns. We compare with empirical return distributions using daily data from the Nasdaq Composite Index in the period from 1992 to 2012. The comparison reveals good agreement, the average portfolio return distribution describes the data well especially in the central part of the distribution. This in turn confirms our ansatz to model the non-stationarity by an ensemble average.
Year of publication: |
2013-08
|
---|---|
Authors: | Chetalova, Desislava ; Schmitt, Thilo A. ; Rudi Sch\"afer ; Guhr, Thomas |
Institutions: | arXiv.org |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Non-Stationarity in Financial Time Series and Generic Features
Schmitt, Thilo A., (2013)
-
Credit Risk and the Instability of the Financial System: an Ensemble Approach
Schmitt, Thilo A., (2013)
-
PORTFOLIO RETURN DISTRIBUTIONS: SAMPLE STATISTICS WITH STOCHASTIC CORRELATIONS
CHETALOVA, DESISLAVA, (2015)
- More ...