Posterior probability intervals for wavelet thresholding
We use cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any given data set. Johnson transformations then yield the credible intervals themselves. Simulations show that these intervals have good coverage rates, even when the underlying function is inhomogeneous, where standard methods fail. In the case where the curve is smooth, the performance of our intervals remains competitive with established nonparametric regression methods. Copyright 2002 The Royal Statistical Society.
Year of publication: |
2002
|
---|---|
Authors: | Barber, Stuart ; Nason, Guy P. ; Silverman, Bernard W. |
Published in: |
Journal of the Royal Statistical Society Series B. - Royal Statistical Society - RSS, ISSN 1369-7412. - Vol. 64.2002, 2, p. 189-205
|
Publisher: |
Royal Statistical Society - RSS |
Saved in:
Saved in favorites
Similar items by person
-
Real nonparametric regression using complex wavelets
Barber, Stuart, (2004)
-
Barber, Stuart, (2008)
-
Barber, Stuart, (1999)
- More ...