Predicting abnormal stock return volatility using textual analysis of news : a meta-learning approach
Year of publication: |
February 2018
|
---|---|
Authors: | Myšková, Renáta ; Hájek, Petr ; Olej, Vladimír |
Subject: | stock return volatility | prediction | textual analysis | sentiment | meta-learning | Volatilität | Volatility | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Börsenkurs | Share price |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | hdl:10419/196425 [Handle] |
Classification: | G12 - Asset Pricing ; G17 - Financial Forecasting ; C45 - Neural Networks and Related Topics ; C53 - Forecasting and Other Model Applications |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Conditional variance forecasts for long-term stock returns
Mammen, Enno, (2019)
-
Predicting abnormal stock return volatility using textual analysis of news: A meta-learning approach
Myšková, Renáta, (2018)
-
How and When are High-Frequency Stock Returns Predictable?
Aït-Sahalia, Yacine, (2022)
- More ...
-
Predicting abnormal stock return volatility using textual analysis of news: A meta-learning approach
Myšková, Renáta, (2018)
-
Environmental modeling for sustainable regional development : system approaches and advanced methods
Olej, Vladimír, (2011)
-
Obvious and hidden features of corporate default in bankruptcy models
Kuběnka, Michal, (2019)
- More ...