Predicting and deterring default with social media information in peer-to-peer lending
Year of publication: |
2017
|
---|---|
Authors: | Ge, Ruyi ; Feng, Juan ; Gu, Bin ; Zhang, Pengzhu |
Published in: |
Journal of management information systems : JMIS. - Philadelphia, PA : Taylor & Francis Group, LLC, ISSN 0742-1222, ZDB-ID 883127-0. - Vol. 34.2017, 2, p. 401-424
|
Subject: | default probability | difference-in-differences | fintech | peer-to-peer lending | online P2P lending | lending industry | propensity score matching | online self-disclosure | social media | soft information | Weibo | Social Web | Social web | Kreditgeschäft | Bank lending | Kreditrisiko | Credit risk | Online-Marketing | Internet marketing | Kreditwürdigkeit | Credit rating | Share Economy | Sharing economy | Finanztechnologie | Financial technology |
-
Know where to invest : platform risk evaluation in online lending
Wang, Zhao, (2022)
-
Peer-to-peer lending default prediction model : a credit scoring application with social media data
Faturohman, Taufik, (2024)
-
Tian, Geran, (2023)
- More ...
-
Borrower's default and self-disclosure of social media information in P2P lending
Ge, Ruyi, (2016)
-
Borrower's default and self-disclosure of social media information in P2P lending
Ge, Ruyi, (2016)
-
Human-robot interaction : when investors adjust the usage of robo-advisors in peer-to-peer lending
Ge, Ruyi, (2021)
- More ...