Predicting carbon and oil price returns using hybrid models based on machine and deep learning
Year of publication: |
2024
|
---|---|
Authors: | Molina-Muñoz, Jesús ; Mora-Valencia, Andrés ; Perote, Javier |
Published in: |
Intelligent systems in accounting, finance & management. - New York, NY [u.a.] : Wiley, ISSN 2160-0074, ZDB-ID 2379344-2. - Vol. 31.2024, 2, Art.-No. e1563, p. 1-14
|
Subject: | carbon prices | hybrid models | non-linear time series | oil prices | Ölpreis | Oil price | Treibhausgas-Emissionen | Greenhouse gas emissions | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Theorie | Theory | Emissionshandel | Emissions trading |
-
Interpretable EU ETS Phase 4 prices forecasting based on deep generative data augmentation approach
Liu, Dinggao, (2024)
-
Modeling volatility and dependence of European carbon and energy prices
Berrisch, Jonathan, (2023)
-
What drives the European carbon market? : macroeconomic factors and forecasts
Bastianin, Andrea, (2024)
- More ...
-
Molina-Muñoz, Jesús, (2025)
-
Modified variance incorporating high-order moments in risk measure with Gram-Charlier returns
León-Camacho, Bernardo, (2022)
-
Moral hazard index for credit risk to SMEs
Castillo, José A., (2022)
- More ...