Predicting equity price with corporate action events using LSTM-RNN
Year of publication: |
February 2018
|
---|---|
Authors: | Minami, Shotaro |
Published in: |
Journal of mathematical finance. - [S.l.] : Scientific Research, ISSN 2162-2434, ZDB-ID 2657377-5. - Vol. 8.2018, 1, p. 58-63
|
Subject: | LSTM | Long-Short Term Memory(LSTM-RNN) | Recurrent Neural Network (RNN) | Prediction of Single Stock Price | Artificial Intelligence Finance | Börsenkurs | Share price | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Zeitreihenanalyse | Time series analysis | Theorie | Theory |
-
The application of sequential generative adversarial networks for stock price prediction
He, Bate, (2021)
-
Vancsura, László, (2023)
-
Recurrent neural network GO-GARCH model for portfolio selection
Burda, Martin, (2024)
- More ...
-
Fundamental factor models using machine learning
Sugitomo, Seisuke, (2018)
- More ...