Predicting failure in the US banking sector : an extreme gradient boosting approach
Year of publication: |
2019
|
---|---|
Authors: | Carmona, Pedro ; Climent, Francisco ; Momparler, Alexandre |
Published in: |
International review of economics & finance : IREF. - Amsterdam [u.a.] : Elsevier, ISSN 1059-0560, ZDB-ID 1137476-7. - Vol. 61.2019, p. 304-323
|
Subject: | ank financial distress | Bank failure prediction | Bank failure prevention | Extreme gradient boosting | Machine learning | XGBoost | Bankinsolvenz | Bank failure | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Insolvenz | Insolvency | USA | United States | Frühwarnsystem | Early warning system |
-
Anticipating bank distress in the Eurozone : an Extreme Gradient Boosting approach
Climent Diranzo, Francisco J., (2019)
-
Yang, He, (2021)
-
Banking failure prediction : a boosting classification tree approach
Momparler, Alexandre, (2016)
- More ...
-
Banking failure prediction : a boosting classification tree approach
Momparler, Alexandre, (2016)
-
Herrera, Rubén, (2021)
-
Anticipating bank distress in the Eurozone : an Extreme Gradient Boosting approach
Climent Diranzo, Francisco J., (2019)
- More ...