Predicting Litigation Risk via Machine Learning
Year of publication: |
[2020]
|
---|---|
Authors: | Lee, Gene Moo ; Naughton, James P. ; Zheng, Xin ; Zhou, Dexin |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Zivilprozess | Civil litigation | Risiko | Risk | Risikomanagement | Risk management | Vergleich | Comparison |
Extent: | 1 Online-Ressource (45 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments December 1, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3740954 [DOI] |
Classification: | G15 - International Financial Markets ; G18 - Government Policy and Regulation ; M41 - Accounting |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Can Risks be Good News? Revealing Risk Perception of Real Estate Investors using Machine Learning
Koelbl, Marina, (2021)
-
Cen, Ling, (2017)
-
Bogging Down Investors : An Unintended Consequence of Litigation Risk
Fu, Siwen, (2020)
- More ...
-
Number of Numbers : Does Quantitative Textual Disclosure Reduce Information Risk?
Campbell, John L., (2021)
-
He, Shu, (2017)
-
Understanding Security Vulnerability Awareness, Firm Incentives, and ICT Development in Pan-Asia
Zhuang, Vincent Y., (2020)
- More ...