Predicting rapid progression phases in glaucoma using a soft voting ensemble classifier exploiting Kalman filtering
Year of publication: |
2021
|
---|---|
Authors: | Jones, Isaac A. ; Van Oyen, Mark P. ; Lavieri, Mariel S. ; Andrews, Christopher A. ; Stein, Joshua D. |
Published in: |
Health care management science : a new journal serving the international health care management community. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9389, ZDB-ID 2006272-2. - Vol. 24.2021, 4, p. 686-701
|
Subject: | Chronic diseases | Predictive modeling | Machine learning | Disease progression | Clinical decision making | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Chronische Krankheit | Chronic disease | Krankheit | Disease | Zustandsraummodell | State space model |
-
Chronic disease progression prediction : leveraging case-based reasoning and big data analytics
Nenova, Zlatana, (2022)
-
Puri, Digambar V., (2023)
-
Classification of patients with chronic disease by activation level using machine learning methods
Demiray, Onur, (2023)
- More ...
-
Dynamic forecasting and control algorithms of glaucoma progression for clinician decision support
Helm, Jonathan E., (2015)
-
Dynamic Monitoring and Control of Irreversible Chronic Diseases with Application to Glaucoma
Kazemian, Pooyan, (2018)
-
Distribution of Medication Considering Information, Transshipment, and Clustering: Malaria in Malawi
Parvin, Hoda, (2018)
- More ...