Predicting schedule adherence of engineering changes : a case study on effectivity date adherence prediction using machine learning
| Year of publication: |
2025
|
|---|---|
| Authors: | Radisic-Aberger, Ognjen ; Burggräf, Peter ; Steinberg, Fabian ; Becher, Alexander ; Weißer, Tim |
| Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 63.2025, 11, p. 3913-3937
|
| Subject: | Artificial intelligence | engineering change | machine learning | predictive business process monitoring | schedule adherence | SDG 9: Industry, innovation, and infrastructure | Künstliche Intelligenz | Prozessmanagement | Business process management | Prognoseverfahren | Forecasting model | Scheduling-Verfahren | Scheduling problem | Algorithmus | Algorithm | Neuronale Netze | Neural networks | Innovation |
-
Radišić-Aberger, Ognjen, (2024)
-
Yamashiro, Hirochika, (2021)
-
Villeneuve, Yoan, (2022)
- More ...
-
Radišić-Aberger, Ognjen, (2024)
-
Deciding on when to change : a benchmark of metaheuristic algorithms for timing engineering changes
Burggräf, Peter, (2024)
-
A systematic review of machine learning for hybrid intelligence in production management
Sauer, Carl René, (2025)
- More ...