Predicting stock return and volatility with machine learning and econometric models : a comparative case study of the Baltic stock market
Year of publication: |
2023
|
---|---|
Authors: | Nõu, Anders ; Lapitskaya, Darya ; Eratalay, M. Hakan ; Sharma, Rajesh |
Published in: |
International journal of computational economics and econometrics : IJCEE. - Genève [u.a.] : Inderscience Enterprises, ISSN 1757-1189, ZDB-ID 2545120-0. - Vol. 13.2023, 4, p. 446-489
|
Subject: | machine learning | neural networks | autoregressive moving average | ARMA | generalised autoregressive conditionally heteroscedastic | GARCH | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | ARCH-Modell | ARCH model | Neuronale Netze | Neural networks | Aktienmarkt | Stock market | Zeitreihenanalyse | Time series analysis | ARMA-Modell | ARMA model | Volatilität | Volatility | Schätztheorie | Estimation theory | Kapitaleinkommen | Capital income | Baltische Staaten | Baltic countries | Börsenkurs | Share price |
-
Nõu, Anders, (2021)
-
Essays on financial time series with a focus on high-frequency data
Becker, Janis, (2020)
-
Doblas, Mark P., (2023)
- More ...
-
Nõu, Anders, (2021)
-
Nõu, Anders, (2022)
-
The Effects of the ECB Communications on Financial Markets before and during COVID-19 Pandemic
Alfieri, Luca, (2022)
- More ...