Predicting systemic financial risk with interpretable machine learning
| Year of publication: |
2024
|
|---|---|
| Authors: | Tang, Pan ; Tang, Tiantian ; Lu, Chennuo |
| Published in: |
The North American journal of economics and finance : a journal of theory and practice. - Amsterdam [u.a.] : Elsevier Science, ISSN 1062-9408, ZDB-ID 2023759-5. - Vol. 71.2024, Art.-No. 102088, p. 1-28
|
| Subject: | Financial stress index | Interpretable machine learning | Markov Regime Switching Model | Systemic financial risk | Künstliche Intelligenz | Artificial intelligence | Finanzkrise | Financial crisis | Prognoseverfahren | Forecasting model | Finanzmarkt | Financial market | Markov-Kette | Markov chain | Systemrisiko | Systemic risk | Finanzrisiko | Financial risk |
-
Unraveling financial fragility of global markets using machine learning
Plakandaras, Vasilios, (2025)
-
Kozmenko, Serhiy, (2015)
-
The predictive power of financial stress on the financial markets dynamics : hidden Markov model
Soltani, Hayet, (2023)
- More ...
-
Shaping corporate ESG performance : role of social trust in China's capital market
Tang, Tiantian, (2024)
-
Forecasting bank default risk with interpretable machine learning : the study of chinese banks
Tang, Pan, (2025)
-
Intraday trend prediction of stock indices with machine learning approaches
Tang, Pan, (2023)
- More ...