Predicting the daily return direction of the stock market using hybrid machine learning algorithms
Year of publication: |
2019
|
---|---|
Authors: | Zhong, Xiao ; Enke, David |
Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 5.2019, 24, p. 1-20
|
Subject: | Daily stock return forecasting | Return direction classification | Data representation | Hybrid machine learning algorithms | Deep neural networks (DNNs) | Trading strategies | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Algorithmus | Algorithm | Aktienmarkt | Stock market | Finanzanalyse | Financial analysis |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1186/s40854-019-0138-0 [DOI] hdl:10419/237170 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Application of machine learning in algorithmic investment strategies on global stock markets
Grudniewicz, Jan, (2023)
-
Mahmoodi, Armin, (2024)
-
Develop an integrated candlestick technical analysis model using meta-heuristic algorithms
Mahmoodi, Armin, (2024)
- More ...
-
Predicting the daily return direction of the stock market using hybrid machine learning algorithms
Zhong, Xiao, (2019)
-
Private Equity Funds and Firm Products
Yang, Wenhao, (2020)
-
Neural network-based stock market return forecasting using data mining for variable reduction
Enke, David, (2006)
- More ...