Rank-based estimation for autoregressive moving average time series models
We establish asymptotic normality and consistency for rank-based estimators of autoregressive-moving average model parameters. The estimators are obtained by minimizing a rank-based residual dispersion function similar to the one given by L.A. Jaeckel [Ann. Math. Stat. Vol. 43 (1972) 1449-1458]. These estimators can have the same asymptotic efficiency as maximum likelihood estimators and are robust. The quality of the asymptotic approximations for finite samples is studied via simulation. Copyright 2007 The Author Journal compilation 2007 Blackwell Publishing Ltd.