Rapid discrete optimization via simulation with Gaussian Markov random fields
Year of publication: |
2021
|
---|---|
Authors: | Semelhago, Mark ; Nelson, Barry L. ; Song, Eunhye ; Wächter, Andreas |
Published in: |
INFORMS journal on computing : JOC. - Catonsville, MD : INFORMS, ISSN 1091-9856, ZDB-ID 1316077-1. - Vol. 33.2021, 3, p. 915-930
|
Subject: | design of experiments | efficiency | statistical analysis | Simulation | Theorie | Theory | Markov-Kette | Markov chain | Statistische Methodenlehre | Statistical theory | Stochastischer Prozess | Stochastic process |
-
Stochastic processes : modelling and simulation
Shanbhag, D. N., (2003)
-
Robust simulation with likelihood-ratio constrained input uncertainty
Hu, Zhaolin, (2022)
-
A Course in Stochastic Processes : Stochastic Models and Statistical Inference
Bosq, Denis, (1996)
- More ...
-
Gaussian Markov random fields for discrete optimization via simulation : framework and algorithms
Salemi, Peter L., (2019)
-
Uncertainty quantification in vehicle content optimization for General Motors
Song, Eunhye, (2020)
-
Input-output uncertainty comparisons for discrete optimization via simulation
Song, Eunhye, (2019)
- More ...