Rate of Poisson approximation of the number of exceedances of nonstationary normal sequences
It is known that the partial maximum of nonstationary Gaussian sequences converges in distribution and that the number of exceedances of a boundary is asymptotically a Poisson random variable, under certain restrictions. We investigate the rate of Poisson approximation for the number of exceedances. We generalize the result known in the stationary case, showing that the given bound of the rate depends on the largest positive auto-correlation value (less than 1) and the lowest values of the nonconstant boundary. We show that for special cases this bound cannot be improved.
Year of publication: |
1995
|
---|---|
Authors: | Hüsler, J. ; Kratz, M. |
Published in: |
Stochastic Processes and their Applications. - Elsevier, ISSN 0304-4149. - Vol. 55.1995, 2, p. 301-313
|
Publisher: |
Elsevier |
Keywords: | Stein-Chen approximation Rate of convergence Exceedances Maxima Nonstationary Gaussian sequence |
Saved in:
Saved in favorites
Similar items by person