Real-time AGV scheduling optimisation method with deep reinforcement learning for energy-efficiency in the container terminal yard
Year of publication: |
2024
|
---|---|
Authors: | Gong, Lin ; Huang, Zijie ; Xiang, Xi ; Liu, Xin |
Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 62.2024, 21, p. 7722-7742
|
Subject: | actor-critic networks | AGV real-time scheduling | container terminal yard | deep reinforcement learning | multi-agent systems | Containerterminal | Container terminal | Scheduling-Verfahren | Scheduling problem | Agentenbasierte Modellierung | Agent-based modeling | Containerverkehr | Container transport | Theorie | Theory | Algorithmus | Algorithm |
-
Gharechgozli, Amir Hossein, (2014)
-
A fill-and-reduce greedy algorithm for the container pre-marshalling problem
Araya, Ignacio, (2023)
-
A combinatorial benders' cuts algorithm for the quayside operation problem at container terminals
Chen, Jiang Hang, (2012)
- More ...
-
Greening your way to profits : green strategies and green revenues
Huang, Zijie, (2024)
-
Pacific accounting review in 2013-2023 : a bibliometric analysis
Cao, June, (2024)
-
Minimising tardiness in hybrid two-stage batch scheduling problem in cyber-physical systems
Liu, Changchun, (2018)
- More ...