Recovering the most entropic copulas from preliminary knowledge of dependence
Year of publication: |
June 2016
|
---|---|
Authors: | Chu, Ba ; Satchell, Stephen |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 4.2016, 2, p. 1-21
|
Subject: | forecast calibration | forecast combination | density forecast | beta mixtures | Bayesian inference | MCMC sampling | Prognoseverfahren | Forecasting model | Statistische Verteilung | Statistical distribution | Bayes-Statistik | Multivariate Verteilung | Multivariate distribution | Monte-Carlo-Simulation | Monte Carlo simulation | Stichprobenerhebung | Sampling | Theorie | Theory | Prognose | Forecast |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/econometrics4020020 [DOI] hdl:10419/171871 [Handle] |
Classification: | C19 - Econometric and Statistical Methods: General. Other ; C59 - Econometric Modeling. Other ; C13 - Estimation |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Bayesian calibration of generalized pools of predictive distributions
Casarin, Roberto, (2016)
-
Bayesian nonparametric calibration and combination of predictive distributions
Bassetti, Federico, (2015)
-
Testing Distributional Assumptions : A L-Moment Approach
Chu, Ba M., (2008)
- More ...
-
Recovering the most entropic copulas from preliminary knowledge of dependence
Chu, Ba, (2016)
-
Optimal Investment and Asymmetric Risk for a Large Portfolio: A Large Deviations Approach
Satchell, Stephen, (2006)
-
Large deviations theorems for optimal investment problems with large portfolios
Chu, Ba, (2011)
- More ...