Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their possible links with Eulerian passive scalar and mixed velocity-passive scalar structure functions. We provide different transformations between these scaling exponents, associated to different transformations linking space and time scales. We obtain four new explicit relations. Experimental data are needed to test these predictions for Lagrangian passive scalar scaling exponents. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005