Relevance-based importance : a comprehensive measure of variable importance in prediction
Year of publication: |
[2024] ; This version: September 19, 2024
|
---|---|
Authors: | Czasonis, Megan ; Kritzman, Mark ; Turkington, David |
Publisher: |
[Cambridge, MA] : [MIT Sloan School of Management] |
Subject: | Adjusted Fit | Collinearity | Conditionality | Fit | Grid Prediction | Information Theory | Informativeness | Linear Regression Analysis | Machine Learning Model | Mahalanobis Distance | Marginal Importance | Relevance | Relevance-based Importance | Relevance-based Prediction | Shapley Value | Similarity | t-statistic | Total Importance | Prognoseverfahren | Forecasting model | Import | Schätztheorie | Estimation theory | Künstliche Intelligenz | Artificial intelligence |
-
A transparent alternative to neural networks with an application to predicting volatility
Czasonis, Megan, (2024)
-
How to predict the performance of NBA draft prospects
Czasonis, Megan, (2023)
-
The virtue of transparency : how to maximize the utility of data without overfitting
Czasonis, Megan, (2024)
- More ...
-
Czasonis, Megan, (2022)
-
Relevance-based prediction : a transparent and adaptive alternative to machine learning
Czasonis, Megan, (2023)
-
Private equity valuations and public equity performance
Czasonis, Megan, (2017)
- More ...