Renewable energy stocks forecast using Twitter investor sentiment and deep learning
Year of publication: |
2022
|
---|---|
Authors: | Herrera, Gabriel Paes ; Constantino, Michel ; Su, Jen-je ; Naranpanawa, Athula |
Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 114.2022, p. 1-11
|
Subject: | Clean energy | LSTM | Stock return | Stock volatility | Twitter | Erneuerbare Energie | Renewable energy | Social Web | Social web | Volatilität | Volatility | Börsenkurs | Share price | Kapitaleinkommen | Capital income | Anlageverhalten | Behavioural finance | Prognoseverfahren | Forecasting model |
-
Behrendt, Simon, (2018)
-
The price impact of tweets : a high-frequency study
Yang, Ni, (2025)
-
Trading on Twitter : using social media sentiment to predict stock returns
Sul, Hong Kee, (2017)
- More ...
-
The use of ICTs and income distribution in Brazil : a machine learning explanation using SHAP values
Herrera, Gabriel Paes, (2023)
-
Forecasting Australian inbound tourism in light of data structure using deep learning
Herrera, Gabriel Paes, (2023)
-
Pereira, Mariana de Souza, (2022)
- More ...