Reservoir computing for macroeconomic forecasting with mixed-frequency data
Year of publication: |
2024
|
---|---|
Authors: | Ballarin, Giovanni ; Dellaportas, Petros ; Grigoryeva, Lyudmila ; Hirt, Marcel ; Van Huellen, Sophie ; Ortega, Juan-Pablo |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier Science, ISSN 0169-2070, ZDB-ID 1495951-3. - Vol. 40.2024, 3, p. 1206-1237
|
Subject: | DFM | Echo state networks | Forecasting | GDP | MIDAS | Mixed-frequency data | Multi-Frequency Echo State Network | Reservoir computing | Time series | U.S. output growth | Bruttoinlandsprodukt | Gross domestic product | Prognoseverfahren | Forecasting model | USA | United States | Zeitreihenanalyse | Time series analysis | Wirtschaftsprognose | Economic forecast | Schätzung | Estimation | Nationaleinkommen | National income |
-
Factor models for non-stationary series : estimates of monthly U.S. GDP
Hengge, Martina, (2017)
-
Variable selection in predictive MIDAS models
Marsilli, Clément, (2014)
-
Forecasting the production side of GDP
Bäurle, Gregor, (2018)
- More ...
-
Too much of a good thing? : speculative effects on commodity futures curves
Van Huellen, Sophie, (2020)
-
Price discovery in commodity futures and cash markets with heterogeneous agents
Van Huellen, Sophie, (2019)
-
APPROACHES TO PRICE FORMATION IN FINANCIALIZED COMMODITY MARKETS
Van Huellen, Sophie, (2019)
- More ...