Robust Bayesian inference in proxy SVARs
We develop methods for robust Bayesian inference in structural vector autoregressions (SVARs) where the impulse responses or forecast error variance decompositions of interest are set-identified using external instruments (or 'proxy SVARs'). Existing Bayesian approaches to inference in proxy SVARs require researchers to specify a single prior over the model's parameters. When parameters are set-identi?ed, a component of the prior is never updated by the data. Giacomini and Kitagawa (2018) propose a method for robust Bayesian inference in set-identifed models that delivers inference about the identified set for the parameter of interest. We extend this approach to proxy SVARs, which allows researchers to relax potentially controversial point-identifying restrictions without having to specify an unrevisable prior. We also explore the effect of instrument strength on posterior inference. We illustrate our approach by revisiting Mertens and Ravn (2013) and relaxing the assumption that they impose to obtain point identification.
Year of publication: |
2019
|
---|---|
Authors: | Giacomini, Raffaella ; Kitagawa, Toru ; Read, Matthew |
Publisher: |
London : Centre for Microdata Methods and Practice (cemmap) |
Saved in:
freely available
Series: | cemmap working paper ; CWP38/19 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 10.1920/wp.cem.2019.3819 [DOI] 1670021890 [GVK] hdl:10419/211131 [Handle] RePEc:ifs:cemmap:38/19 [RePEc] |
Source: |
Persistent link: https://www.econbiz.de/10012146390
Saved in favorites
Similar items by person
-
Narrative restrictions and proxies
Giacomini, Raffaella, (2022)
-
Robust Bayesian analysis for econometrics
Giacomini, Raffaella, (2021)
-
Narrative restrictions and proxies
Giacomini, Raffaella, (2022)
- More ...